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Characterization of the Finline Step Discontinuity
on Anisotropic Substrates
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Abstract — An analysis of the finline step discontinuity in either uniaxial

or biaxial substrates is presented. The method is based ou a spectral-

domain hybrid-mode expansion in an enclosed finline cavity in conjunction

with Galerkh’s method. A numerically stable scattering matrix formulation

is used. The effect of substrate anisotropy is described. The results are

also compared with published experimental data or those by the modal

matching method when the substrate is isotropic. The comparison shows

very good agreement.

I. INTRODUCTION

F INLINES ARE widely used as millimeter-wave com-

ponents, and a variety of finline passive and active

devices has been realized. The finline step discontinuity

has been used as an impedance transformer in MMIC.

Anisotropy is present in a variety of practical substrates

[1]. It has been shown, for example in [1] and [2], that

neglecting substrate anisotropy leads to serious errors in

the dispersion characteristics of MIC’S or MMIC’S. There-

fore, it is of practical interest to study the effects of

substrate anisotropy on the properties of MIC and MMIC

junction discontinuities. Theoretical investigations of fin-

line step discontinuities by modal analysis have been re-

ported by a number of authors [3]–[6] and a transverse

resonance method based on the impedance matrix formu-

lation was reported in [7]. Jansen [8] proposed a gener-

alized algorithm for the analysis of planar MIC and MMIC

with a spectral-domain approach. Using this approach,

certain results on the modeling of junction discontinuities

have been reported [8]-[15]. However, no attempt has been

made to use this method for the characterization of finline

step discontinuities. In fact, the formulation of the

boundary value problem in Jansen’s spectral-domain

method and the transverse resonance technique proposed

in [7] are identical. However, in the spectral-domain ap-

proach, the goal is to find the incident and reflected wave

strength in each port to construct the scattering matrix,
while the transverse resonance method [7] aims to find the

resonant length of the cavity. Based on the resonant length,

the impedance parameters are computed from the reso-

nance condition. Therefore, these two methods are basi-

Manuscript received April 16, 1987; revised July 16, 1987. This work
was supported by Research Contracts NSF ECS 82 15409 and
MICRO/TRW 85-129.

The authors are with the Electrical Engineering Department, Univer-
sity of California, Los Angeles, CA 90024.

IEEE Log Number 8716913.

tally the same in theory but they are different in a com-

puter-aided design point of view. The aim of this paper is

to generalize the spectral-domain technique such that the

substrate anisotropy can be incorporated into the design of

finline junction discontinuities in integrated circuits. Al-

though only the finline step discontinuity will be consid-

ered here, the modification to other discontinuities should

be straightforward.

One of the main features of the spectral-domain method

is that two fictitious metallic walls are placed away from

the step discontinuity. This allows a complete hybrid-mode

expansion inside the cavity except at the interface region

where the discontinuity occurs (see Figs. 1 and 2). The

hybrid modes in the isotropic region are the superposition

of LSE and LSM modes, while the hybrid modes in the

biaxial material may be constructed from two coupled-wave

equations of the type described in [2] and [16]. In the

standard numerical analysis, the unknown electric fields in

the aperture region are expanded in terms of a set of

known functions. If the basis functions are also trans-

formed into the 2-D Fourier domain, only a one-dimen-

sional boundary value problem needs to be solved. After

the Galerkin method is performed, the complete electro-

magnetic fields inside the cavity can be determined from

the solution of a characteristic equation. The dominant-

mode incident and reflected waves can then be extracted

from the 3-D electromagnetic fields. If the above proce-

dures are performed twice, the scattering parameters of the

step discontinuity can be determined. The difference be-

tween the current analysis and Jansen’s spectral-domain

approach is that in this analysis the complete eigenmodes

are used as expansion modes in the slot. Thus, besides the

wave amplitudes of the incident and reflected waves, the

finline characteristics can also be extracted from the 3-D

electromagnetic fields.

Since in the above formulation the scattering parameters
are directly related to the power flow in the finline, the

results are quite stable. The accuracy of this procedure is

confirmed by excellent agreement with published experi-

mental data and modal analysis. In contrast, the amplitude

of the scattering parameters in [7] differs noticeably from

that of modal analysis. The results with sapphire substrate

in which the optical axis has various orientations and with

the substrate of PTFE cloth (eXX = 2.45, CYY= 2.89, CZ2=
2.95) are presented to illustrate the effects of substrate

anisotropy.
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Fig. 1. (a) Cross section of the finline in waveguide. (b) Reduced

geometry of Fig. l(a).
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Fig. 2. Finline with a symmetric step discontinuity. 1= [1 + 12.

II. ANALYTICAL FORMULATION

A. Formulation of the Characteristic Equation

Although the method adopted here can be applied to

unilateral or antipodal finline, the problem is formulated

for bilateral finline only. However, certain results for uni-

lateral finline will be given to provide a comparison with

other approaches. The su”bitrate material is assumed to be

uniaxial or biaxial and it is described by a permittivity

tensor of the form

The electromagnetic fields in this type of material cannot

in general be decomposed into LSE and LSM modes. The

wave equations are the coupled partial differential equa-

tions given by [2] and [16]:

Cyy 82EY d 2EY d 2EY
.- __
c,x 8Y2 + 8X2 + azz

()
a 2EZ

– l–~ — + k&yyEy = O
<.x aydz

(2)

6YY a 2EY

()
– l–— — + k:c,zEz = O

.x ayaz
(3)

c

and

aq aEy ah=

c“ ax
—+ Ez,—+ 6YYay az

= o. (4)

The finline is usually excited by the dominant TEIO mode

of an empty waveguide. Therefore, because of symmetry, a

magnetic wall can be put at x = – a ~; thus only the

half-structure shown in Fig. l(b) need be considered. The

spectral-domain approach is applied hereto a cavity formed

by putting two metallic walls away from the discontinuity

(Fig. 2). The position of the metallic walls should be

chosen such that higher order modes have died out before

reaching them. In this manner, transmission line theory

can be applied. The spectral-domain method allows one to

transform the EM fields inside the cavity into the two-

dimensional (y and z) spectral domains, thus reducing the

task to the solution of a one-dimensional boundary value

problem. The transverse fields with respect to the x axis in

the air region can be expanded in terms of LSE and LSM

modes, while the transverse fields in the anisotropic region

are obtained by solving the fourth-order ordinary dif-

ferential equation resulting from the Fourier transform of

(2)-(4) in [2] and [16]. AS a result, the transverse E- ‘and

H-field components in the two regions are:

Region I— Anisotropic Region, – aX c x <0:

+ d2B~ncos~mn2(x + aX)] Xl?w,n

Ezl = ~ ll~ocosflmo(x + aX)OOM
~=1

+ S 5 [4 L.cos/Lnl(x + ax)
,,=lm=l.

+ B;zn COS&n2(X + ax)]@Mn

+ d6B:,n sin&2(x + a.)] @M
}

(5)

(6)

(7)
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(28)

In what follows, the resonant length of the cavity as a

function of operating frequency is determined based on

Galerkin’s method. The electric fields in the aperture re-

gion at the interface (x = O) are expanded in terms of a set

of known functions. In order to provide less brute force

and more reliable results, the basis functions are chosen to

form a complete set. For the step discontinuity under

consideration, a complete set of eigenfunctions can be

obtained by the electric fields in the cross section of a

stepped waveguide. The discussion of the method to con-

struct the basis functions will be presented later. The

electric field components in the aperture region can be

written as

E,. = E Ke.vu (29)
1>

and

E,. = ~ Joe,u (30)
u

where e,,~, and e=o are the eigenmodes of a stepped wave-

guide. Applying the boundary conditions at the air–dielec-

tric interface (x = O), the unknowns A~,, B~~, A~,~, and

B~,fl can be eliminated. The results are a system of homo-

geneous linear equations in terms of the unknown coeffi-

cients V,):

[L][V]=O (31)
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u=1,2,3,

Also

and

1
, u= I,2,3,. . . , and m = n = O is excluded.

( J
= +~~eYU dsmnu (33)

so

Xfnnu = / @mnezuds. (34)
-’s0

B. Constructing the Scattering Matrix

Once the characteristic equation is solved, the complete

electromagnetic field inside the cavity can be determined.

The next step is to use microwave network theory to

extract the information of the junction discontinuity from
the obtained EM field. As pointed out by Jansen [8], for

the two-port network, exactly two fictitious numerical

experiments need to be performed. In other words, with

reference to Fig. 2, the characteristic equation is solved

twice, for a frequency, for two sets of resonant lengths 11

and 12. As a result, the incident and reflected wave strengths

are related through

~(~) = – ~(QeWT)
L (35)

where i and k represent the i th port in the k th numerical

experiment and the reference planes are at the step junc-

tion. The wave strength (Al or B,) is determined by the

solution of the characteristic equation. That is, once (31) is

solved, the expansion coefficients and aperture electric

fields can be determined accordingly. The voltage wave

and propagation constant of each port can be obtained

from the aperture electric fields through

V(Z) =/~,&vo(y, Z) dy. (36)

That is, one can plot out the function V(z) (voltage wave)

to find the propagation constant and wave amplitude in

each side of the step junction. The propagation constant or

guided wavelength is found from the distance between

voltage maxima and minima, while from (35) and V(z) ~a,

one is able to determine the A and B matrices. In the

above procedure, it is important that the values of 11 and

12 be large enough so that the voltage wave and guided

wavelength of the dominant mode can be accurately de-

termined from the peak of V(z) in (36). In other words,

the condition of li > Ai/4 should be satisfied such that

higher order modes die out before reaching the voltage

wave maximum. As a result, the scattering matrix can be

obtained as

C. Basis Functions of the Finline with a Step Discontinuity

The formulation in the above two sections is quite

general and is valid for a class of discontinuities in micro-

wave and millimeter-wave guiding structures. The above

generalized algorithm has the feature that for different

types of junction discontinuities, the formulation is differ-

ent only in the choice of basis functions. However, it

should be noted that hybrid numerical techniques may be

required for a specific type of discontinuities. For the step

discontinuity under consideration, the slot patterns are

assumed to be symmetric with respect to the waveguide

narrow wall. Therefore, one can put an electric wall at

y = O. In the numerical procedure, different types of ex-

pansion functions are possible. The point matching method

is particularly useful for sophisticated discontinuities, for

example, the tapered transition. However, the computer

cost is usually enormously large. Jansen [8] used a mod-

ified mode-matching technique. He used mode expansions

only in the vicinity of the junction to take into account the

higher order modes and the entire domain standing wave
modes obtained from two-dimensional analysis to repre-

sent the dominant mode of the specific guiding structure.

This has the advantage that the proper edge condition can

be taken into account in the expansion functions. Here the

complete eigenmode expansions are used, which are simi-

lar to those adopted by Sorrentino and Itoh [7]. The
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eigenfunctions in stepped waveguide are composed of TE

and TM modes.

For TE eigenfunctions, the fields can be derived from a

scalar potential ‘*(Y, z):

EWE~=-~x(VY) (38)

and

where

and

H)2SII 2
k~, = k;– —

dz “

(39)

(40)

(41)

(42)

(43)

For TM eigenfunctions, the fields can be derived from a

scalar potential @(y, z):

E(TM) = v+ (44)

and

where

()2rvy
$:1) = sin kl,z sin y

1

()

2sny
@J2)=sin k2, (z–l) sin ~ .

2

(45)

(46)

(47)

The kC is the eigenvalue of the boundary value problem of

the stepped waveguide. For each k ~, there corresponds an

eigenmode or a basis function. The solutions of kC are

determined from the characteristic equations obtained by

the boundary condition at the step junction [7], [16].

III. NUMERICAL ANALYSIS

Based on the analytical formulation described in the last

section, numerical computations are performed. The accu-

racy of the numerical results depends on the truncation of

the double Fourier series m and n, the number of basis

functions (eigenmodes) U, and the transverse expansion

terms r and s in each eigenmode. It is found that in each

eigenmode, even a few expansion terms (r and s) can

provide excellent resolution of the field distribution in a

stepped waveguide. Typically, r =s = 4 is used. As men-

tioned in the last section, the eigenmodes that construct

the basis functions are composed of both TE and TM

modes for a stepped waveguide. It is observed that the TE

eigenmodes have a dominant effect on the property of the

step junction. This may be due to the fact that in the

finline structure the longitudinal electric field in the slot

(Ez) is usually much smaller than the tranverse component

( EJ,). Also, the first few TE eigenmodes contain the infor-

mation of the EY component and have no E= of the finline

dominant mode. Therefore, the first few TE eigenmodes

can take into account mostly the dominant mode as well as

the corresponding evanescent modes. This behavior can be

observed from the sign of k!, and k;, in (39) and (40).

Therefore, in the numerical analysis, the first four TE

eigenmodes and the first two TM eigenmodes are used.

This is equivalent to the total of 48 (6X4+6X 4) entire

domain modes that are used to expand the electric fields in

the aperture. It has been well addressed by many authors,

e.g., [17]–[19], that in the mode matching of iris-type

discontinuities, relative convergence problems will occur if

the edge condition is not taken into account in the expan-

sion functions. Therefore, it has been recommended that

the truncation of the Fourier terms be chosen such that the

spatial resolution of each highest Fourier term is about the

same. For the standard waveguide dimension, the Fourier

terms used are typically less than 50. The main computer

cost is to find the cavity lengths 11 and 12 at an operating

frequency. The procedure requires the iteration of the

characteristic function in (31), which contains triple sum-

mation. Since in each iteration, only the longitudinal di-

mension is changed, the transverse Fourier terms need to

be computed only at the beginning of the iteration. This

procedure can greatly reduce the computer cost. The com-

puter time for solving (31) is typically one minute on the

IBM 3090 system.

The current analysis is first checked against the experi-

mental results reported in [5]. The measurement was per-

formed with one side of the finline short-circuited (12= 0.3

cm) and the reflection coefficient was measured at the

other side 1.1 cm from the junction. The Fourier terms are

chosen as m = n = 20. The comparison is shown in Fig. 3.
It is seen that there is very good agreement within the

plotting accuracy. The present analysis has the feature that

the propagation constants of each finline section are de-

termined from the 3-D electromagnetic fields (described in

the last section) instead of precalculated values from the

2-D spectral-domain analysis. This may avoid the possible

mismatch when computing scattering parameters. Since

the wave amplitudes are obtained from the slot EY compo-

nent and the characteristic Smpedance is -mt determAed

yet, the computed scattering matrix is not normalized. One

thing is that although the definition of characteristic im-

pedance is quite arbitrary, the impedance ratio of the
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WR-62 unilateral finline with a. = 0.127 mm, t,= 2.22, dl = 0.8 mm,

C/z = 4 mm, 12 = 3 mm, and reference distance= 11 mm.

TABLE I

COMPARISON OF 2-D SPECTRAL-DOMAIN ANALYSIS AND

EXTRACTED SOLUTIONS FROM 3-D EM FIELDS

— modal analysis [6]

------ transverse resonance method [7]
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Fig. 4. Magnitude of the scattering parameters of a unilateral finline
step discontinuity. c, = 2,22.

TABLE II

COMPARISON OF SAPPHIRE SUBSTRATE WITH
DIFFERENTLY ORIENTED OPTICAL AxIs

26 1.403 1.392 1.204 1.200 1.597 1.609

29 1.165 1.156 1.035 1.036 1.555 1,558

32 1.006 0.992 0.913 0.916 1.530 1.528

d21d1 .I.$,lla 1s1llb lK$121a l$21b

1.5 0.144 0.136 0.990 0.991

2.0 0.242 0.235 0.970 0.972

2.5 0.322 0.313 0.947 0.950

35 0.889 0.884 0.818 0.820 1.517 1.488

38 0.799 0.788 0.741 0.748 1.510 1.468

WR-28 with ,,,. = 2.45, CYY= 2.89, t.. = 2.95, ax = 0.127 mm,

dl = 1 mm, and dz = 2 mm.

(a) 2-D spectral-domain analysis.

(b) Extracted solutions from 3-D EM fields.

finline in each side of the step junction should be fixed.

From network theory, the unitary property of a normal-

ized scattering matrix allows one to determine the char-

acteristic impedance ratio. In other words, S1l or S22 is the

same regardless of whether the wave amplitude is normal-

ized, and the normalized Slz or S21 can be deduced from
Sll and S22. The impedance transform ratio can be ob-

tained from unnormalized Slz /S21. The guided wavelength

or impedance ratio computed from the 3-D analysis may

be compared with those from the 2-D spectral-domain

method [2] to confirm the validity of the current analysis.

An example of the comparison is shown in Table I. It is

seen that the discrepancy is typically less ~than 1 percent

3.0 0.395 0.3.89 0.920 0.921

WR-62, j’= 14 GHz, aX = 0.127 mm.

(a) c., = c,, = 9.4 and ~,, ’116

(b) ~1,, =6,, =9.4 and ~... ’116

and the agreement is excellent. The reason for this ~gree-

ment is that once the complete EM fields inside the cavity

are determined, these fields contain all the information

pertinent to the determination of the equivalent circuit

parameters.

It has been shown that the magnitude of the scattering

parameters obtained by modal analysis [6] and the trans-

verse resonance method [7] differ noticeably. It is observed

that the present analysis is in excellent agreement with
modal analysis. A comparison of the three different ap-

proaches is shown in Fig. 4. The impedance matrix formu-

lation of the transverse resonance method reported in [7]

has the feature that the propagation constants and the

characteristic impedance are computed from the 2-D anal-

ysis and the power distribution is indirectly related to the
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Fig. 6. Phase of the scattering parameters. (xx = 2.45, c,, = 2.89, and
e,. = 2.95.

scattering parameters from the numerical computation

point of view. In addition, for each scattering matrix

computation, three sets of cavity lengths are required

instead of two in the present analysis.

The effects of the anisotropic substrate on the properties

of the finline step discontinuity are investigated with a

sapphire substrate having f ~= 9.4 and 6~= 11.6 as an ex-

ample. The optical axis is directed in either the i or the j

direction. The computed results are shown in Table II. It is

found that the substrate has less effect on the scattering

parameters than on the propagation constant. A differ-

ently oriented optical axis results typically in a 3–5-per-

cent difference in ]Sll 1. The frequency-dependent scatter-

ing parameters of the finline step discontinuity on PTFE

cloth material (cXX = 2.45, C,YY= 2.89, eZZ= 2.95) [20] are

shown in Figs. 5 and 6. It is observed that the results,

especially for the magnitude, are insensitive to frequency

change. This is due to the fact that the power reflected

\Slll 2 and transmitted IS1212 depends mainly on the im-

pedance transform ratio, which is typically frequency in-

sensitive except near the cutoff frequency. Also, the ISill is

qualitatively proportional to the characteristic impedance

ratio.

IV. CONCLUSIONS

A modified three-dimensional spectral-domain approach

has been applied to characterize the finline step discon-

tinuity on anisotropic substrates. The results are numeri-

cally stable and in good agreement with both measurement

and modal analysis. The propagation constant of the finline

in each section and the characteristic impedance ratio are

also obtained from the current three-dimensional hybrid-

mode analysis. These results are in good agreement with

those computed from two-dimensional full-wave analysis.

This comparison also confirms the validity of the current

analysis. In contrast, in Jansen’s spectral-domain ap-

proach, the propagation constant had to be precalculated.

The substrate anisotropy is found to have less effect on the

network than on the dispersion parameters. The present

approach may be modified to analyze in a straightforward

manner other types of discontinuities.
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