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Characterization of the Finline Step Discontinuity
on Anisotropic Substrates

HUNG-YU YANG, STUDENT MEMBER, IEEE, AND NICOLAOS G. ALEXOPOULOS, FELLOW, IEEE

Abstract — An analysis of the finline step discontinuity in either uniaxial
or biaxial substrates is presented. The method is based on a spectral-
domain hybrid-mode expansion in an enclosed finline cavity in conjunction
with Galerkin’s method. A numerically stable scattering matrix formulation
is used. The effect of substrate anisotropy is described. The results are
also compared with published experimental data or those by the modal
matching method when the substrate is isotropic. The comparison shows
very good agreement.

I. INTRODUCTION

F INLINES ARE widely used as millimeter-wave com-
ponents, and a variety of finline passive and active
devices has been realized. The finline step discontinuity
has been used as an impedance transformer in MMIC.
Anisotropy is present in a variety of practical substrates
[1]. 1t has been shown, for example in [1] and [2], that
neglecting substrate anisotropy leads to serious errors in
the dispersion characteristics of MIC’s or MMIC’s. There-
fore, it is of practical interest to study the effects of
substrate anisotropy on the properties of MIC and MMIC
junction discontinuities. Theoretical investigations of fin-
line step discontinuities by modal analysis have been re-
ported by a number of authors [3]-[6] and a transverse
resonance method based on the impedance matrix formu-
lation was reported in [7]. Jansen [8] proposed a gener-
alized algorithm for the analysis of planar MIC and MMIC
with a spectral-domain approach. Using this approach,
certain results on the modeling of junction discontinuities
have been reported [8]-[15]. However, no attempt has been
made to use this method for the characterization of finline
step discontinuities. In fact, the formulation of the
boundary value problem in Jansen’s spectral-domain
method and the transverse resonance technique proposed
in [7] are identical. However, in the spectral-domain ap-
proach, the goal is to find the incident and reflected wave
strength in each port to construct the scattering matrix,
while the transverse resonance method [7] aims to find the
resonant length of the cavity. Based on the resonant length,
the impedance parameters are computed from the reso-
nance condition. Therefore, these two methods are basi-
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cally the same in theory but they are different in a com-
puter-aided design point of view. The aim of this paper is
to generalize the spectral-domain technique such that the
substrate anisotropy can be incorporated into the design of
finline junction discontinuities in integrated circuits. Al-
though only the finline step discontinuity will be consid-
ered here, the modification to other discontinuities should
be straightforward.

One of the main features of the spectral-domain method
is that two fictitious metallic walls are placed away from
the step discontinuity. This allows a complete hybrid-mode
expansion inside the cavity except at the interface region
where the discontinuity occurs (see Figs. 1 and 2). The
hybrid modes in the isotropic region are the superposition
of LSE and LSM modes, while the hybrid modes in the
biaxial material may be constructed from two coupled-wave
equations of the type described in {2] and [16]. In the
standard numerical analysis, the unknown electric fields in
the aperture region are expanded in terms of a set of
known functions. If the basis functions are also trans-
formed into the 2-D Fourier domain, only a one-dimen-
sional boundary value problem needs to be solved. After
the Galerkin method is performed, the complete electro-
magnetic fields inside the cavity can be determined from
the solution of a characteristic equation. The dominant-
mode incident and reflected waves can then be extracted
from the 3-D electromagnetic fields. If the above proce-
dures are performed twice, the scattering parameters of the
step discontinuity can be determined. The difference be-
tween the current analysis and Jansen’s spectral-domain
approach is that in this analysis the complete eigenmodes
are used as expansion modes in the slot. Thus, besides the
wave amplitudes of the incident and reflected waves, the
finline characteristics can also be extracted from the 3-D
electromagnetic fields.

Since in the above formulation the scattering parameters
are directly related to the power flow in the finline, the
results are quite stable. The accuracy of this procedure is
confirmed by excellent agreement with published experi-
mental data and modal analysis. In contrast, the amplitude
of the scattering parameters in [7] differs noticeably from
that of modal analysis. The results with sapphire substrate
in which the optical axis has various orientations and with
the substrate of PTFE cloth (e,, =2.45, ¢, =2.89, ¢,, =
2.95) are presented to illustrate the effects of substrate
anisotropy.
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Fig. 1. (a) Cross section of the finline in waveguide. (b) Reduced

geometry of Fig. 1(a).

Y

Fig. 2. Finline with a symmetric step discontinuity. / =/, + /,.

II. ANALYTICAL FORMULATION
A. Formulation of the Characteristic Equation

Although the method adopted here can be applied to
unilateral or antipodal finline, the problem is formulated
for bilateral finline only. However, certain results for uni-
lateral finline will be given to provide a comparison with
other approaches. The substrate material is assumed to be
uniaxial or biaxial and it is described by a perm1tt1v1ty
tensor of the form

'

€, O 0
€:= €0 0 €yy O . (1)
0 0 ¢

The electromagnetic fields in this type of material cannot
in general be decomposed into LSE and LSM modes. The
wave equations are the coupled partial differential equa-
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tions given by [2] and [16]:
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The finline is usually excited by the dominant TE;; mode
of an empty waveguide. Therefore, because of symmetry, a
magnetic wall can be put at x=—a,; thus only the
half-structure shown in Fig. 1(b) need be considered. The
spectral-domain approach is applied here to a cavity formed
by putting two metallic walls away frofm the discontinuity
(Fig. 2). The position of the metallic walls should be
chosen such that higher order modes have died out before
reaching them. In this manner, transmission line theory
can be applied. The spectral-domain method allows one to
transform the EM fields inside the cavity into the two-
dimensional (y and z) spectral domains, thus reducing the
task to the solution of a one-dimensional boundary value
problem. The transverse fields with respect to the x axis in
the air region can be expanded in terms of LSE and LSM
modes, while the transverse fields in the anisotropic region
are obtained by solving the fourth-order ordinary dif-
ferential equation resulting from the Fourier transform of
(2)-(4) in [2] and [16]. As a result, the transverse E- and
H-field components in the two regions are:

Region I — Anisotropic Region, —a, < x < 0:

0. (4)
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In what follows, the resonant length of the cavity as a
function of operating frequency is deternined based on
Galerkin’s method. The electric fields in the aperture re-
gion at the interface (x = 0) are expanded in terms of a set
of known functions. In order to provide less brute force
and more reliable results, the basis functions are chosen to
form a complete set. For the step discontinuity under
consideration, a complete set of eigenfunctions can be
obtained by the electric fields in the cross section of a
stepped waveguide. The discussion of the method to con-
struct the basis functions will be presented later. The
electric field components in the aperture region can be
written as

=LVe, (29)

and
(30)

E 0= ZI/ve:v

where e, and e_, are the eigenmodes of a stepped wave-
guide. Applying the boundary conditions at the air—dielec-
tric interface (x = 0), the unknowns 4, ,, B,,,, A4/, and
B/, can be eliminated. The results are a system of homo-
geneous linear equations in terms of the unknown coeffi-

cients V,:
[L][V]=0

(31)
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v=1,2,3,---, u=1,2,3,---’, and m=n=0 is excluded.
Also
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B. Constructing the Scattering Matrix

Once the characteristic equation is solved, the complete
electromagnetic field inside the cavity can be determined.
The next step is to use microwave network theory to
extract the information of the junction discontinuity from
the obtained EM field. As pointed out by Jansen [8], for
the two-port network, exactly two fictitious numerical
experiments need to be performed. In other words, with
reference to Fig. 2, the characteristic equation is solved
twice, for a frequency, for two sets of resonant lengths /;
and /,. As a result, the incident and reflected wave strengths

are related through

B®) = — f(R)g2B 1P

(35)
where i and k represent the ith port in the kth numerical
experiment and the reference planes are at the step junc-
tion. The wave strength (4, or B,) is determined by the
solution of the characteristic equation. That is, once (31) is
solved, the expansion coefficients and aperture electric
fields can be determined accordingly. The voltage wave
and propagation constant of each port can be obtained
from the aperture electric fields through

V(o) = [ Ealr,2) &, (36)

That is, one can plot out the function ¥(z) (voltage wave)
to find the propagation constant and wave amplitude in
each side of the step junction. The propagation constant or
guided wavelength is found from the distance between
voltage maxima and minima, while from (35) and V(2),,,,,
one is able to determine the 4 and B matrices. In the
above procedure, it is important that the values of /; and
!, be large enough so that the voltage wave and guided
wavelength of the dominant mode can be accurately de-
termined from the peak of ¥(z) in (36). In other words,
the condition of ;> A, /4 should be satisfied such that
higher order modes die out before reaching the voltage
wave maximum. As a result, the scattering matrix can be

obtained as
[Sn Su]_ Bi Bl||4 4
Su S» Bi Bi || AL 43

C. Basis Functions of the Finline with a Step Discontinuity

-1

(37)

The formulation in the above two sections is quite
general and is valid for a class of discontinuities in micro-
wave and millimeter-wave guiding structures. The above
generalized algorithm has the feature that for different
types of junction discontinuities, the formulation is differ-
ent only in the choice of basis functions. However, it
should be noted that hybrid numerical techniques may be
required for a specific type of discontinuities. For the step
discontinuity under consideration, the slot patterns are
assumed to be symmetric with respect to the waveguide
narrow wall. Therefore, one can put an electric wall at
y=0. In the numerical procedure, different types of ex-
pansion functions are possible. The point matching method
is particularly useful for sophisticated discontinuities, for
example, the tapered transition. However, the computer
cost is usually enormously large. Jansen [8] used a mod-
ified mode-matching technique. He used mode expansions
only in the vicinity of the junction to take into account the
higher order modes and the entire domain standing wave
modes obtained from two-dimensional analysis to repre-
sent the dominant mode of the specific guiding structure.
This has the advantage that the proper edge condition can
be taken into account in the expansion functions. Here the
complete eigenmode expansions are used, which are simi-
lar to those adopted by Sorrentino and Itoh [7]. The
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eigenfunctions in stepped waveguide are composed of TE
and TM modes.

For TE eigenfunctions, the fields can be derived from a
scalar potential ¥( y, z):

EM =_3%x(v¥)

(38)

and
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For TM eigenfunctions, the fields can be derived from a
scalar potential ¢(y, z):
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The k, is the eigenvalue of the boundary value problem of
the stepped waveguide. For each &, there corresponds an
eigenmode or a basis function. The solutions of k, are
determined from the characteristic equations obtained by
the boundary condition at the step junction [7], [16].

III. NUMERICAL ANALYSIS

Based on the analytical formulation described in the last
section, numerical computations are performed. The accu-
racy of the numerical results depends on the truncation of
the double Fourier series m and n, the number of basis

functions (eigenmodes) v, and the transverse expansion
terms » and s in each eigenmode. It is found that in each
eigenmode, even a few expansion terms (r and s) can
provide excellent resolution of the field distribution in a
stepped waveguide. Typically, r =s=4 is used. As men-
tioned in the last section, the eigenmodes that construct
the basis functions are composed of both TE and TM
modes for a stepped waveguide. It is observed that the TE
eigenmodes have a dominant effect on the property of the
step junction. This may be due to the fact that in the
finline structure the longitudinal electric field in the slot
(E,) is usually much smaller than the tranverse component
(E,). Also, the first few TE eigenmodes contain the infor-
mation of the E, component and have no E, of the finline
dominant mode. Therefore, the first few TE eigenmodes
can take into account mostly the dominant mode as well as
the corresponding evanescent modes. This behavior can be
observed from the sign of k7, and k3, in (39) and (40).
Therefore, in the numerical analysis, the first four TE
eigenmodes and the first two TM eigenmodes are used.
This is equivalent to the total of 48 (6 X4+ 6X4) entire
domain modes that are used to expand the electric fields in
the aperture. It has been well addressed by many authors,
e.g., [17]-[19], that in the mode matching of iris-type
discontinuities, relative convergence problems will occur if
the edge condition is not taken into account in the expan-
sion functions. Therefore, it has been recommended that
the truncation of the Fourier terms be chosen such that the
spatial resolution of each highest Fourier term is about the
same. For the standard waveguide dimension, the Fourier
terms used are typically less than 50. The main computer
cost is to find the cavity lengths /; and /, at an operating
frequency. The procedure requires the iteration of the
characteristic function in (31), which contains triple sum-
mation. Since in each iteration, only the longitudinal di-
mension is changed, the transverse Fourier terms need to
be computed only at the beginning of the iteration. This
procedure can greatly reduce the computer cost. The com-
puter time for solving (31) is typically one minute on the
IBM 3090 system.

The current analysis is first checked against the experi-
mental results reported in [5]. The measurement was per-
formed with one side of the finline short-circuited (/, = 0.3
cm) and the reflection coefficient was measured at the
other side 1.1 ecm from the junction. The Fourier terms are
chosen as m = n = 20. The comparison is shown in Fig. 3.
It is seen that there is very good agreement within the
plotting accuracy. The present analysis has the feature that
the propagation constants of each finline section are de-
termined from the 3-D electromagnetic fields (described in
the last section) instead of precalculated values from the
2-D spectral-domain analysis. This may avoid the possible
mismatch when computing scattering parameters. Since
the wave amplitudes are obtained from the slot £, compo-
nent and the characteristic-impedance is-net determined
yet, the computed scattering matrix is not normalized. One
thing is that although the definition of characteristic im-
pedance is quite arbitrary, the impedance ratio of the
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TABLEI

COMPARISON OF 2-D SPECTRAL-DOMAIN ANALYSIS AND
EXTRACTED SOLUTIONS FROM 3-D EM FIELDS

fqGH a3 M M N ZZh Zzh
26 1.403 1392 1.204 1.200 1.597 1.609
20 1.165 1.156 1.035 1.036 1.555 1558
32 1.006 0992 0913 0916 1.530 1.528
35 0.880 0.884 0.818 0.820 1.517 1.488
38 0.799 0.788 0.741 0.748 1.510 1.468

WR-28 with €, = 245, €, =2.89, ¢, =295, 4, =0.127 mm,
d, =1 mm, and d, =2 mm.

(a) 2-D spectral-domain analysis.

(b) Extracted solutions from 3-D EM fields.

finline in each side of the step junction should be fixed.
From network theory, the unitary property of a normal-
ized scattering matrix allows one to determine the char-
acteristic impedance ratio. In other words, Sy; or S,, is the
same regardless of whether the wave amplitude is normal-
ized, and the normalized S,, or S, can be deduced from
S,, and S,,. The impedance transform ratio can be ob-
tained from unnormalized S, /S,;,. The guided wavelength
or impedance ratio computed from the 3-D analysis may
be compared with those from the 2-D spectral-domain
method [2] to confirm the validity of the current analysis.
An example of the comparison is shown in Table 1. It is
seen that the discrepancy is typically less .than 1 percent
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step discontinuity. ¢, =2.22.

TABLE II

COMPARISON OF SAPPHIRE SUBSTRATE WITH
DIFFERENTLY ORIENTED OPTICAL AXIS

dydy ISyl ISyl 1Sl 1555l
1.5 0.144 0.136 0.990 0.991
20 0242 0235 0970 0972
25 0322 0313 0947 0950
30 0395 0389 0920 0.921

WR-62, f =14 GHz, a, =0.127 mm,
(a) ¢, =¢.., =94 and ¢, =116
(b) €, =¢.. =94 and ¢, =116.

and the agreement is excellent. The reason for this agree-
ment is that once the complete EM fields inside the cavity
are determined, these fields contain all the information
pertinent to the determination of the equivalent circuit
parameters.

Tt has been shown that the magnitude of the scattering
parameters obtained by modal analysis [6] and the trans-
verse resonance method [7] differ noticeably. It is observed
that the present analysis is in excellent agreement with
modal analysis. A comparison of the three different ap-
proaches is shown in Fig. 4. The impedance matrix formu-
lation of the transverse resonance method reported in [7]
has the feature that the propagation constants and the
characteristic impedance are computed from the 2-D anal-
ysis and the power distribution is indirectly related to the
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scattering parameters from the numerical computation
point of view. In addition, for each scattering matrix
computation, three sets of cavity lengths are required
instead of two in the present analysis.

The effects of the anisotropic substrate on the properties
of the finline step discontinuity are investigated with a
sapphire substrate having ¢,=9.4 and ¢,=11.6 as an ex-
ample. The optical axis is directed in either the £ or the §
direction. The computed results are shown in Table II. It is

found that the substrate has less effect on the scattering
parameters than on the propagation constant. A differ-
ently oriented optical axis results typically in a 3-5-per-
cent difference in |S;;| The frequency-dependent scatter-
ing parameters of the finline step discontinuity on PTFE
cloth material (e, =2.45, ¢,, =289, ¢,, =2.95) [20] are
shown in Figs. 5 and 6. It is observed that the results,
especially for the magnitude, are insensitive to frequency
change. This is due to the fact that the power reflected
|S;;]? and transmitted |S;,|> depends mainly on the im-
pedance transform ratio, which is typically frequency in-
sensitive except near the cutoff frequency. Also, the |Sy;|is
qualitatively proportional to the characteristic impedance
ratio.

IV. CONCLUSIONS

A modified three-dimensional spectral-domain approach
has been applied to characterize the finline step discon-
tinuity on anisotropic substrates. The results are numeri-
cally stable and in good agreement with both measurement
and modal analysis. The propagation constant of the finline
in each section and the characteristic impedance ratio are
also obtained from the current three-dimensional hybrid-
mode analysis. These results are in good agreement with
those computed from two-dimensional full-wave analysis.
This comparison also confirms the validity of the current
analysis. In contrast, in Jansen’s spectral-domain ap-
proach, the propagation constant had to be precalculated.
The substrate anisotropy is found to have less effect on the
network than on the dispersion parameters. The present
approach may be modified to analyze in a straightforward
manner other types of discontinuities.
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